Electrical Measurements and Instrumentation

Introduction To measurements

- Similarly other measures were invented

Physical quantity	Standard unit	Definition
Length	metre	The length of path travelled by light in an interval of 1/299 792458 seconds
Mass	kilogram	The mass of a platinum-iridium cylinder kept in the International Bureau of Weights and Measures, Sèvres, Paris
Time	second	$9.192631770 \times 10^{9}$ cycles of radiation from vaporized caesium-133 (an accuracy of 1 in 10^{12} or 1 second in 36000 years)
Temperature	kelvin	The temperature difference between absolute zero and the triple point of water is defined as 273.16 kelvin
Current	ampere	One ampere is the current flowing through two infinitely long parallel conductors of negligible cross-section placed 1 metre apart in a vacuum and producing a force of 2×10^{-7} newtons per metre length of conductor
Luminous intensity	candela	One candela is the luminous intensity in a given direction from a source emitting monochromatic radiation at a frequency of 540 terahertz $\left(\mathrm{Hz} \times 10^{12}\right)$ and with a radiant density in that direction of 1.4641 $\mathrm{mW} /$ steradian. (1 steradian is the solid angle which, having its vertex at the centre of a sphere, cuts off an area of the sphere surface equal to that of a square with sides of length equal to the sphere radius)
Matter	mole	The number of atoms in a 0.012 kg mass of carbon-12

Table 1.2 Fundamental and derived SI units
(a) Fundamental units

Quantity	Standard unit	Symbol
Length	metre	m
Mass	kilogram	kg
Time	second	s
Electric current	ampere	A
Temperature	kelvin	K
Luminous intensity	candela	cd
Matter	mole	mol

(c) Derived units

Quantity	Standard unit	Symbol
Area	square metre	m^{2}
Volume	cubic metre	m^{3}
Velocity	metre per second	m / s
Acceleration	metre per second squared	$\mathrm{m} / \mathrm{s}^{2}$
Angular velocity	radian per second	$\mathrm{rad} / \mathrm{s}$
Angular acceleration	radian per second squared	$\mathrm{rad} / \mathrm{s}^{2}$
Density	kilogram per cubic metre	$\mathrm{kg} / \mathrm{m}^{3}$
Specific volume	cubic metre per kilogram	$\mathrm{m}^{3} / \mathrm{kg}$
Mass flow rate	kilogram per second	kg / s
Volume flow rate	cubic metre per second	$\mathrm{m}^{3} / \mathrm{s}$
Force	newton	N
Pressure	newton per square metre	$\mathrm{N} / \mathrm{m}^{2}$
Torque	newton metre	Nm
Momentum	kilogram metre per second	$\mathrm{kg} \mathrm{m} / \mathrm{s}$
Moment of inertia	kilogram metre squared	$\mathrm{kg} \mathrm{m}^{2}$
Kinematic viscosity	square metre per second	$\mathrm{m}^{2} / \mathrm{s}$
Dynamic viscosity	newton second per square metre	$\mathrm{Ns} / \mathrm{m}^{2}$
Work, energy, heat	joule	J
Specific energy	joule per cubic metre	$\mathrm{J} / \mathrm{m}^{3}$
Power	watt	W
Thermal conductivity	watt per metre kelvin	W/m K
Electric charge	coulomb	C
Voltage, e.m.f., pot. diff.	volt	V
Electric field strength	volt per metre	V / m
Electric resistance	ohm	Ω
Electric capacitance	farad	F
Electric inductance	henry	H
Electric conductance	siemen	S
Resistivity	ohm metre	$\Omega \mathrm{m}$
Permittivity	farad per metre	F/m
Permeability	henry per metre	H/m
Current density	ampere per square metre	$\mathrm{A} / \mathrm{m}^{2}$

- SI units (meter, kg, seconds,....etc) : systems international units
- Imperial system of units (miles, yards, inch, feet, slug,...etc)
- Still used : particularly in Britain and America.
- Trend to ban imperial system of units internationally.
- However: one can convert from one system to another.

Measurement system applications

- Applications can be classified into three major areas:
\checkmark regulating trade: measure physical quantities: length, volume, mass,..etc.
\checkmark Applications in monitoring functions
- to take actions (e.g. monitor Temp in greenhouses: windows on/off)
- in chemical process: reactions at certain temp \& pressure.
\checkmark As a part of automatic feedback system
- e.g. Temperature control system

Elements of measurement system

Sensor: e.g. thermocouple, strain gauge / usually linear/ primary or complete (thermometer)

VCE: convenience, e.g. $\mathrm{R} \gg \mathrm{V}$ (strain gauge/bridge) SPE: improve quality, e.g. op.amp for thermocouples (mV)
Transmission: for convenience or accessibility
\square Signal can be displayed or fedback to automatic control system

Selection of nepasuring ingtidnent

> Specifications/characteristics: accuracy - resolution -sensitivity ..etc
> Environmental conditions: eliminate use OR protection (but might reduce dynamic response (e.g,measuring temperature) - might disturb the instrument (e,g, pressure sensor at high flow rate!)
$>$ Cost

- Instrument Engineers: compromise/ select from list/ stay updated
- Better characteristics >>> higher the cost
- Consideration to: durability - maintainability - constancy of performance
- (Purchase cost + maintenance cost)/ projected life or period that instrument is expected to be used! = cost/year >>> unless instrument is reused

Static characteristics of instruments

- Accuracy and inaccuracy (measurement uncertainty)
o measures how close the output reading to correct value
o Inaccuracy: extend to which reading can be wrong - as percentage of full scale, e.g. $\pm 1 \% \gg$ can be crucial (thermometer in room vs factory) match process and instrument range!
- Precision/ repeatability/ reproducibility
o precision: degree of freedom from random errors (confused with accuracy!)
o Repeatability: closeness to output when input is repeated (same conditions. e.g. instrument, observer, location)
o Reproducibility : repeatability if conditions vary

Comparison of accuracy and precision.

- Tolerance
o maximum deviation of manufactured component from specified value. e.g. 1000 W resistors with tolerance 5% in power >> 950 to 1050 at random pick
- Range or span
o minimum and maximum values of quantity the instrument is designed to measure
- Linearity
o maximum deviation in output from fitted line (\% full scale)
- Sensitivity of measurement
o Change in output at a given input change :
o scale deflection/value of measurand producing deflection = slope of fitted line

- Threshold
o Minimum detectable input (at start). E.g. car speedometer ($15 \mathrm{~km} / \mathrm{hr}$)
- Resolution
o Minimum input produces detectable change in output. E.g. if car speedometer subdivision is $20 \mathrm{~km} / \mathrm{hr}$ we can estimate changes upto 5 km .hr roughly ($5 \mathrm{~km} / \mathrm{hr}$ is the resolution)
- Sensitivity to disturbance
o Standard ambient conditions are usually defined (e.g. temperature)
o Measures the magnitude of change in characteristics of instrument due to condition change
o Zero drift (bias): zero reading is modified. E.g. scale > remove bias. Also voltmeter due to change in temp >> Volts/ ${ }^{\circ} \mathrm{C}$ (zero drift coefficient $/ \mathrm{s}>$ if other parameters !)
o Sensitivity drift: varies as ambient condition varies
- saturation
o Greater input than allowed

Errors during measurement

Introduction

- Errors during measurement > not associated with noise
- Aims at reducing errors or quantify them
- Problem arises from cumulative reading > overall magnitude of error
- Two types of errors : systematic \& Random
- Systematic error: in output reading consistently on one side (all positive or all negative). Due to:
- Disturbance during measurement
- Environmental changes (modifying inputs)
- bent of needle
- Uncalibrated instrument , drift in instrument characteristics
- Cabling practice

Introduction

- Random error: perturbations on either sides by random and unpredictable effects(equal weights for positive and negative deviations). Due to:
- Wrong interpretation (e.g. interpolation)
- Electrical noise
- Statically quantified, and improved by averaging
- Quantification is based on probability of confidence (e.g. 99\%)
- There is a chance of repeating the error! E.g. wrong reading

Sources of systematic error

- System disturbance due to measurement:
- By the act of measurement : e.g. thermometer in hot water or plate to measure pressure in a pipe
- Improved by reconsidering the design of the instrument
- Measurement in electrical circuits:
- Consider an example of voltage measured with voltmeter

$$
\begin{aligned}
\frac{1}{R_{\mathrm{CD}}} & =\frac{1}{R_{1}+R_{2}}+\frac{1}{R_{3}} \quad \text { or } \quad R_{\mathrm{CD}}=\frac{\left(R_{1}+R_{2}\right) R_{3}}{R_{1}+R_{2}+R_{3}} \\
\frac{1}{R_{\mathrm{AB}}} & =\frac{1}{R_{\mathrm{CD}}+R_{4}}+\frac{1}{R_{5}} \quad \text { or } \quad R_{\mathrm{AB}}=\frac{\left(R_{4}+R_{\mathrm{CD}}\right) R_{5}}{R_{4}+R_{\mathrm{CD}}+R_{5}}
\end{aligned}
$$

$$
\begin{aligned}
& R_{\mathrm{AB}}=\frac{\left[\frac{\left(R_{1}+R_{2}\right) R_{3}}{R_{1}+R_{2}+R_{3}}+R_{4}\right] R_{5}}{\frac{\left(R_{1}+R_{2}\right) R_{3}}{R_{1}+R_{2}+R_{3}}+R_{4}+R_{5}} \\
& I=\frac{E_{0}}{R_{\mathrm{AB}}+R_{\mathrm{m}}}, \\
& E_{\mathrm{m}}=\frac{R_{\mathrm{m}} E_{0}}{R_{\mathrm{AB}}+R_{\mathrm{m}}} .
\end{aligned}
$$

R_{AB} should be large : ideally infinity...>>> but this presents other constrains !! e.g. moving coil voltmeter

- Errors due to environmental inputs:
- Characteristics are specified initially
- E.g. closed box with something inside to know ! (real input, environmental input or a mixture of the two)
- Therefore environmental input must be measured first!
- Errors due to connecting leads:
- Taking account of the resistance of measuring leads
- E.g. resistance thermometer with copper leads (resistance + temperature coefficient)
- Also subjectivity to electrical or magnetic field > noise! > careful routing
\square Reduction of systematic errors
- Careful instrument design might help........E.g. strain gauge >> use material with very low temperature coefficient!!
- Method of opposing input > to cancel the effect >> e.g. compensating resistance with negative temperature coefficient to that of coil

Random errors

- Using averaging and statistical analysis
- Mean and Median values:
for any set of n measurements $x_{1}, x_{2} \cdots x_{n}$ of a constant quantity.

$$
x_{\text {mean }}=\frac{x_{1}+x_{2}+\cdots x_{n}}{n}
$$

$x_{\text {median }}=x_{n+1} / 2$

398420394416404408400420396413430
409406402407405404407404407407408
$($ Measurement set A) \quad mean $=409.0$ and median $=408$
$($ Measurement set $B)$ mean $=406.0$ and median $=407$

34 , whilst in set B , the spread is only $6 \longrightarrow$ Smaller spread $>$ more confidence
409406402407405404407404407407408406410406405408 406409406405409406407
(Measurement set C)
Now, mean $=406.5$ and median $=406 \longrightarrow$ Mean approaches median as measurement increases

- Standard deviation and Variance:

- Better estimation of results distribution from mean (not smallest and highest)
- Deviation error of each measurement: d_{i}
- Variance:

$$
d_{i}=x_{i}-x_{\text {mean }}
$$

$$
V=\frac{d_{1}^{2}+d_{2}^{2} \cdots d_{n}^{2}}{n-1}
$$

- Standard deviation :

$$
\sigma=\sqrt{V}=\sqrt{\frac{d_{1}^{2}+d_{2}^{2} \cdots d_{n}^{2}}{n-1}}
$$

- Thus, as V and σ decrease for a measurement set, we are able to express greater confidence that the calculated mean or median value is close to the true value, i.e. that the averaging process has reduced the random error value close to zero.
- Comparing V and σ for measurement sets B and C, V and σ get smaller as the number of measurements increases, confirming that confidence in the mean value increases as the number of measurements increases.

Graphical data analysis technique: frequency distribution

- Histogram and histogram of deviations

Graphical data analysis technique: frequency distribution

Frequency distribution curve of deviation:

- Frequency of occurrence of each deviation value Vs magnitude of deviation
- Asymmetry between curves at zero deviation
- Normalizing magnitude so the area under curve is unity >>>> probability curve
- D: probability density function

Electromechanical

Instruments

Permanent-Magnet Moving-

Coil Instruments

- Deflection Instrument Fundamentals
- Deflecting force
- causes the pointer to move from its zero position when a current flows
- is magnetic force; the current sets up a magnetic field that interacts with the field of the permanent magnet (see Figure 3.1 (a))

(a) The deflecting force in a PMMC instrument is provided by a current-carrying coil pivoted in a magnetic field.

(b) The controlling force from the springs balances the deflecting force.

Figure 3-1 The deflecting force in a PMMC instrument is produced by the current in the moving coil. The controlling force is provided by spiral springs. The two forces are equal when the pointer is stationary.

- Controlling force
- is provided by spiral springs
(Figure 3.1 (b))
- retain the coil and pointer at their zero position when no current is flowing
- When current flows, the springs wind up as the coil rotates, and the force they exert on the coil increases
- The coil and pointer stop rotating when the controlling force becomes equal to the deflecting force.
- The spring material must be nonmagnetic to avoid any magnetic field influence on the controlling force.
- Since the springs are used to make electrical connection to the coil, they must have a low resistance.
- Damping force
- is required to minimize (or damp out) the oscillations
- must be present only when the coil is in motion, thus it must be generated by the rotation of the coil
- In PMMC instruments, the damping force is normally provided by eddy currents.

(a) Lack of damping causes the pointer to oscillate.

(b) The damping force in a PMMC instrument is provided by eddy currents induced in the aluminum coil former as it moves through the magnetic field.

Figure 3-2 A deflection instrument requires a damping force to stop the pointer oscillating about the indicated reading. The damping force is usually produced by eddy currents in a nonmagnetic coil former. These exist only when the coil is in motion.

- Eddy currents induced in the coil former set up a magnetic flux that opposes the coil motion, thus damping the oscillations of the coil (see Figure 3.2 (b)).

- Two methods of supporting the moving system of a deflection instrument
- Jeweled-bearing suspension
- Cone-shaped cuts in jeweled ends of pivots
- Least possible friction
- Shock of an instrument spring \Rightarrow supported to absorb such shocks
- Taut-band method
- Much tougher than jeweledbearing
- Two flat metal ribbons
(phosphor bronze or platinum alloy) are held under tension by spring to support the coil
- Because of the spring, the metal ribbons behave like rubber under tension.
- The ribbons also exert a controlling force as they twist, and they can be used as electrical connections to the moving coil.
- Much more sensitive than the jeweled-bearing type because there is less friction
- Extremely rugged, not easily be shattered.

Figure 3-3 The moving coil in a PMMC instrument may be supported by pivots in jeweled bearings, or by two flat metal ribbons held taut by springs. Taut-band suspension is the toughest and the most sensitive of the two.

- PMMC Construction
 - D'Arsonval or horseshoe magnet
 - Core-magnet

Figure 3-4 A typical PMMC instrument is constructed of a horseshoe magnet, soft-iron pole shoes, a soft-iron core, and a suspended coil that moves in the air gap between the core and the pole shoes.

Figure 3-5 In a core-magnet PMMC instrument, the permanent magnet is located inside the moving coil, and the coil and magnet are positioned inside a soft-iron cylinder.

- Torque Equation and Scale

- When a current I flows through a one-turn coil situated in a magnetic field, a force F is exerted on each side of the coil

$$
F=B l l \quad \text { newtons }
$$

(a) Force F acts on each side of the coil

(b) Area enclosed by coil is $D \times \ell$

(c) Linear scale on a PMMC instrument

Figure 3-6 The deflecting torque on the coil of a PMMC instrument is directly proportional to the magnetic flux density, the coil dimensions, and the coil current. This gives the instrument a linear scale.

- Since the force acts on each side of the coil, the total force for a coil of N turns is

$$
F=2 B I l N
$$

- The force on each side acts at a radius r, producing a deflecting torque:

$$
\begin{aligned}
T_{D} & =2 B \| I N r=B I I N(2 r) \\
& =B I I N D \\
& =B A I N
\end{aligned}
$$

- The controlling torque exerted by the spiral springs is directly proportional to the deformation or windup of the springs. Thus, the controlling torque is proportional to the actual angle of deflection of the pointer.

$$
T_{C}=K \theta \quad \text { where } K \text { is a constant }
$$

- For a given deflection, the controlling and deflecting torque are equal:

$$
K \theta=B l I N D
$$

$$
\theta=C l \quad \text { where } C \text { is a constant }
$$

Example 3.1 A PMMC instrument with a 100turn coil has a magnetic flux density in its air gaps of $\mathrm{B}=0.2 \mathrm{~T}$. The coil dimension are D $=1 \mathrm{~cm}$ and $\mathrm{l}=1.5 \mathrm{~cm}$. Calculate the torque on the coil for a current of 1 mA .

Solution

$$
\begin{aligned}
T_{d} & =\text { BlIND }=(0.2 T)\left(1.5 \times 10^{-2}\right)\left(1 \times 10^{-3}\right)(100)\left(1 \times 10^{-2}\right) \\
& =3 \times 10^{-6} \mathrm{Nm}
\end{aligned}
$$

Resistor Types

Importance parameters

*Value
$*$ Power rating

Tolerance

Temperature coefficient

Type	Values (Ω)	Power rating (W)	Tolerance (\%)	Temperature coefficient (ppm $/{ }^{\circ} \mathrm{C}$)	picture
Wire wound (power)	10m~3k	$3 \sim 1 \mathrm{k}$	$\pm 1 \sim \pm 10$	$\pm 30 \sim \pm 300$	$\begin{aligned} & 2 W 0.518 \mathrm{~K} \\ & \wedge^{46} 162 \end{aligned}$
Wire wound (precision)	$10 \mathrm{~m} \sim 1 \mathrm{M}$	$0.1 \sim 1$	$\pm 0.005 \sim \pm 1$	$\pm 3 \sim \pm 30$	\sum_{500008}
Carbon film	$1 \sim 1 \mathrm{M}$	0.1~3	$\pm 2 \sim \pm 10$	$\pm 100 \sim \pm 200$	-
Metal film	$100 \mathrm{~m} \sim 1 \mathrm{M}$	0.1~3	$\pm 0.5 \sim \pm 5$	$\pm 10 \sim \pm 200$	
Metal film (precision)	10m~100k	$0.1 \sim 1$	$\pm 0.05 \sim \pm 5$	$\pm 0.4 \sim \pm 10$	驚高
Metal oxide film	100m~100k	$1 \sim 10$	$\pm 2 \sim \pm 10$	$\pm 200 \sim \pm 500$	- iii

Data: Transistor technology (10/2000)

Resistor Values

* Color codes
* Alphanumeric

4 band color codes

Color	Digit	Multiplier	Tolerance(\%)		Temperature coefficient (ppm/ ${ }^{\circ} \mathrm{C}$)	
Silver		10^{-2}	± 10	K		
Gold		10^{-1}	± 5	J		
Black	0	10^{0}	-	-	± 250	K
Brown	1	10^{1}	± 1	F	± 100	H
Red	2	10^{2}	± 2	G	± 50	G
Orange	3	10^{3}		-	± 15	D
Yellow	4	10^{4}	-	-	± 25	F
Green	5	10^{5}	± 0.5	D	± 20	E
Blue	6	10^{6}	± 0.25	C	± 10	C
Violet	7	10^{7}	± 0.1	B	± 5	B
Gray	8	10^{8}		-	± 1	A
White	9	10^{9}	-	-		
		-	± 20	M	-	-

Data: Transistor technology (10/2000)

Least sig. fig. Multiplier of value
Ex.

$R=560 \Omega \pm \mathbf{2 \%}$

Alphanumeric

$\mathrm{R}, \mathrm{K}, \mathrm{M}, \mathrm{G}$, and $\mathrm{T}=$
$\mathrm{x} 10^{0}, \mathrm{x} 10^{3}, \mathrm{x} 10^{6}, \mathrm{x} 10^{9}$, and $\mathrm{x} 10^{12}$
Ex. $6 \mathrm{M} 8=6.8 \times 10^{6} \Omega$
$59 \mathrm{P} 04=59.04 \Omega$

Resistor Values

$\boldsymbol{R}=\boldsymbol{x} \pm \% \Delta \boldsymbol{x}$

Tolerance
Nominal value
Ex. $1 \mathrm{k} \Omega \pm 10 \% \equiv 900-1100 \Omega$

For 10% resistor

$$
10,12,15,18, \ldots
$$

where $\boldsymbol{E}=6,12,24,96$
for $20,10,5,1 \%$ tolerance

$$
\boldsymbol{n}=0,1,2,3, \ldots
$$

Commonly available resistance for a fixed resistor

$\pm 1 \%$	$\pm 2 \%$	$\pm 5 \%$	$\pm 10 \%$	$\pm 1 \%$	$\pm 2 \%$	$\pm 5 \%$	$\pm 10 \%$
100	100	10	10	316	316		
102				324			
105	105			332	332	33	33
107				340			
110	110	11		348	348		
113				357			
115	115			365	365	36	
118				374			
121	121	12	12	383	383		
124				392		39	39
127	127			407	407		
130		13		412			
133 137	133			422	422		
140	140			442	442		
143				453			
147	147			464	464		
150		15	15	475		47	47
154	154			487	487		
158				499			
162	162	16		511	511	51	
165	169			523 536	536		
174				549			
178	178			562	562	56	56
182		18	18	576			
187	187			590 604	590		
196	196			619	619	62	
200		20		634			
205	205			649	649		
215	215			681	681	68	68
221		22	22	698			
226	226			715	715		
232				732 750			
237 243	237			750	750	75	
243		24		765			
249	249			787	787		
261	261			825	825	82	82
267				845			
274	274	27	27	866	866		
280	287			887 909	909	91	
294				931			
301	301	30		953	953		
309				976			

Resistance Measurement Techniques

- Bridge circuit
 - Voltmeter-ammeter
 - Substitution - Ohmmeter

Substitution

Ohmmeter

-Voltmeter-ammeter method is rarely used in practical applications (mostly used in Laboratory)
-Ohmmeter uses only one meter by keeping one parameter constant

Example: series ohmmeter

Resistance to

Basic series ohmmeter
Ohmmeter scale
Basic series ohmmeter consisting of a PMMC and a series-connected standard resistor $\left(R_{1}\right)$. When the ohmmeter terminals are shorted ($R_{\mathrm{x}}=0$) meter full scale defection occurs. At half scale defection $R_{\mathrm{x}}=R_{1}+R_{\mathrm{m}}$, and at zero defection the terminals are open-circuited.

Bridge Circuit

Bridge Circuit is a null method, operates on the principle of comparison. That is a known (standard) value is adjusted until it is equal to the unknown value.

Bridge Circuit

Wheatstone Bridge and Balance Condition

Suitable for moderate resistance values: 1Ω to $10 \mathrm{M} \Omega$

Balance condition:

No potential difference across the galvanometer (there is no current through the galvanometer)

Under this condition: $V_{\mathrm{AD}}=V_{\mathrm{AB}}$

$$
\begin{array}{r}
I_{1} R_{1}=I_{2} R_{2} \\
\text { And also } V_{\mathrm{DC}}=V_{\mathrm{BC}} \\
I_{3} R_{3}=I_{4} R_{4}
\end{array}
$$

where I_{1}, I_{2}, I_{3}, and I_{4} are current in resistance arms respectively, since $I_{1}=I_{3}$ and $I_{2}=I_{4}$

$$
\frac{R_{1}}{R_{3}}=\frac{R_{2}}{R_{4}} \text { or } \quad R_{x}=R_{4}=R_{3} \frac{R_{2}}{R_{1}}
$$

Example

(a) Equal resistance

(c) Proportional resistance

(b) Proportional resistance

(d) 2-Volt unbalance

Measurement Errors

1. Limiting error of the known resistors

Using 1st order approximation: A

$$
R_{x}=\left(R_{3} \pm \Delta R_{3}\right)\left(\frac{R_{2} \pm \Delta R_{2}}{R_{1} \pm \Delta R_{1}}\right)
$$

$$
R_{x}=R_{3} \frac{R_{2}}{R_{1}}\left(1 \pm \frac{\Delta R_{1}}{R_{1}} \pm \frac{\Delta R_{2}}{R_{2}} \pm \frac{\Delta R_{3}}{R_{3}}\right)
$$

2. Insufficient sensitivity of Detector
3. Changes in resistance of the bridge arms due to the heating effect $\left(I^{2} R\right)$ or temperatures
4. Thermal emf or contact potential in the bridge circuit
5. Error due to the lead connection

3, 4 and 5 play the important role in the measurement of low value resistance

Example In the Wheatstone bridge circuit, R_{3} is a decade resistance with a specified in accuracy $\pm 0.2 \%$ and R_{1} and $R_{2}=500 \Omega \pm 0.1 \%$. If the value of R_{3} at the null position is 520.4Ω, determine the possible minimum and maximum value of R_{X}

$$
\begin{aligned}
& \text { SOLUTION Apply the error equation } R_{x}=R_{3} \frac{R_{2}}{R_{1}}\left(1 \pm \frac{\Delta R_{1}}{R_{1}} \pm \frac{\Delta R_{2}}{R_{2}} \pm \frac{\Delta R_{3}}{R_{3}}\right) \\
& R_{x}=\frac{520.4 \times 500}{500}\left(1 \pm \frac{0.1}{100} \pm \frac{0.1}{100} \pm \frac{0.2}{100}\right)=520.4(1 \pm 0.004)=520.4 \pm 0.4 \%
\end{aligned}
$$

Therefore the possible values of R_{3} are 518.32 to 522.48Ω
Example A Wheatstone bridge has a ratio arm of $1 / 100\left(R_{2} / R_{1}\right)$. At first balance, R_{3} is adjusted to 1000.3Ω. The value of R_{x} is then changed by the temperature change, the new value of R_{3} to achieve the balance condition again is 1002.1Ω. Find the change of R_{x} due to the temperature change.
SOLUTION At first balance: $\quad R_{x}$ old $=R_{3} \frac{R_{2}}{R_{1}}=1000.3 \times \frac{1}{100}=10.003 \Omega$
After the temperature change: $\quad R_{x}$ new $=R_{3} \frac{R_{2}}{R_{1}}=1002.1 \times \frac{1}{100}=10.021 \Omega$
Therefore, the change of R_{x} due to the temperature change is 0.018Ω

Low resistance Bridge: $R_{x}<1 \Omega$

Effect of connecting lead

The effects of the connecting lead and the connecting terminals are prominent when the value of R_{x} decreases to a few Ohms
$R_{\mathrm{y}}={ }_{R_{x}}$ the resistance of the connecting lead from R_{3} to R_{x}

At point $m: R_{y}$ is added to the unknown R_{x}, resulting in too high and indication of R_{x}
At point $n: R_{y}$ is added to R_{3}, therefore the measurement of R_{x} will be lower than it should be.

At point $p: \quad R_{x}+R_{n p}=\left(R_{3}+R_{m p}\right) \frac{R_{1}}{R_{2}}$ rearrange $\quad R_{x}=R_{3} \frac{R_{1}}{R_{2}}+R_{m p} \frac{R_{1}}{R_{2}}-R_{n p}$
Where $R_{m p}$ and $R_{n p}$ are the lead resistance from m to p and n to p, respectively.

The effect of the connecting lead will be canceled out, if the sum of $2^{\text {nd }}$ and $3^{\text {rd }}$ term is zero.

$$
\begin{gathered}
R_{m p} \frac{R_{1}}{R_{2}}-R_{n p}=0 \text { or } \frac{R_{n p}}{R_{m p}}=\frac{R_{1}}{R_{2}} \\
R_{x}=R_{3} \frac{R_{1}}{R_{2}}
\end{gathered}
$$

Kelvin Double Bridge: 1 to 0.00001Ω

Four-Terminal Resistor

Current

Current

Four-terminal resistors have current terminals and potential terminals. The resistance is defined as that between the potential terminals, so that contact voltage drops at the current terminals do not introduce errors.

Four-Terminal Resistor and Kelvin Double Bridge

- r_{1} causes no effect on the balance condition.
- The effects of r_{2} and r_{3} could be minimized, if $R_{1} \gg$ r_{2} and $R_{a} \gg r_{3}$.
- The main error comes from r_{4}, even though this value is very small.

Kelvin Double Bridge: 1 to 0.00001Ω

- 2 ratio arms: $\boldsymbol{R}_{\mathbf{1}}-\boldsymbol{R}_{\mathbf{2}}$ and $\boldsymbol{R}_{a}-\boldsymbol{R}_{\boldsymbol{b}}$
- the connecting lead between \boldsymbol{m} and \boldsymbol{n} : yoke The balance conditions: $V_{l k}=V_{l m p}$ or $V_{o k}=V_{o n p}$

$$
\begin{gather*}
V_{l k}=\frac{R_{2}}{R_{1}+R_{2}} V \tag{1}\\
\text { here } V=I R_{l o}=I\left[R_{3}+R_{x}+\left(R_{a}+R_{b}\right) / / R_{y}\right] \\
V_{l m p}=I\left[R_{3}+\frac{R_{y}}{R_{a}+R_{b}+R_{y}} R_{b}\right]-(2) \tag{2}
\end{gather*}
$$

Eq. (1) $=(2)$ and rearrange: $\quad R_{x}=R_{3} \frac{R_{1}}{R_{2}}+\frac{R_{b} R_{y}}{R_{a}+R_{b}+R_{y}}\left(\frac{R_{1}}{R_{2}}-\frac{R_{a}}{R_{b}}\right) \square R_{x}=R_{3} \frac{R_{1}}{R_{2}}$
If we set $\boldsymbol{R}_{\mathbf{1}} / \boldsymbol{R}_{\mathbf{2}}=\boldsymbol{R}_{d} / \boldsymbol{R}_{b}$, the second term of the right hand side will be zero, the relation reduce to the well known relation. In summary, The resistance of the yoke has no effect on the measurement, if the two sets of ratio arms have equal resistance ratios.

MegaOhm Bridge

- Just as low-resistance measurements are affected by series lead impedance, highresistance measurements are affected by shunt-leakage resistance.

- the guard terminal is connect to a bridge corner such that the leakage resistances are placed across bridge arm with low resistances

$$
\begin{array}{ll}
R_{1} / / R_{C} \approx R_{C} & \text { since } R_{1} \gg R_{C} \\
R_{2} / / R_{g} \approx R_{g} & \text { since } R_{2} \gg R_{g}
\end{array}
$$

$$
R_{x} \approx R_{A} \frac{R_{C}}{R_{B}}
$$

Capacitor

Capacitance - the ability of a dielectric to store electrical charge per unit voltage

Dielectric	Construction	Capacitance	Breakdown,V
Air	Meshed plates	$10-400 \mathrm{pF}$	$100(0.02$-in air gap)
Ceramic	Tubular	$0.5-1600 \mathrm{pF}$	$500-20,000$
	Disk	1 pF to $1 \mu \mathrm{~F}$	
Electrolytic	Aluminum	$1-6800 \mu \mathrm{~F}$	$10-450$
	Tantalum	0.047 to $330 \mu \mathrm{~F}$	$6-50$
Mica	Stacked sheets	$10-5000 \mathrm{pF}$	$500-20,000$
Paper	Rolled foil	$0.001-1 \mu \mathrm{~F}$	$200-1,600$
Plastic film	Foil or Metallized	100 pF to $100 \mu \mathrm{~F}$	$50-600$

Inductor

Inductance - the ability of a conductor to produce induced voltage when the current varies.

μ_{r} - relative permeability of core material Ni ferrite:

$$
\mu_{\mathrm{r}}>200
$$

Mn ferrite: $\quad \mu_{\mathrm{r}}>2,000$

C_{d}
Equivalent circuit of an RF coil

Distributed capacitance $\boldsymbol{C}_{\boldsymbol{d}}$ between turns

Air core ${ }^{(2)}$ inductor

Iron core inductor

Quality Factor of Inductor and Capacitor

Equivalent circuit of capacitance

Parallel equivalent circuit

Series equivalent circuit

Equivalent circuit of Inductance

Series equivalent circuit

Parallel equivalent circuit

$$
R_{s}=\frac{R_{p} X_{p}^{2}}{R_{p}^{2}+X_{p}^{2}} \quad X_{s}=\frac{X_{p} R_{p}^{2}}{R_{p}^{2}+X_{p}^{2}}
$$

Quality Factor of Inductor and Capacitor

Quality factor of a coil: the ratio of reactance to resistance (frequency dependent and circuit configuration)

$$
\text { Inductance series circuit: } \quad Q=\frac{X_{s}}{R_{s}}=\frac{\omega L_{s}}{R_{s}} \quad \text { Typical } Q \sim 5-1000
$$

Inductance parallel circuit: $Q=\frac{R_{p}}{X_{p}}=\frac{R_{p}}{\omega L_{p}}$
Dissipation factor of a capacitor: the ratio of reactance to resistance (frequency dependent and circuit configuration)

Capacitance parallel circuit: $\quad D=\frac{X_{p}}{R_{p}}=\frac{1}{\omega C_{p} R_{p}} \quad$ Typical $D \sim 10^{-4}-0.1$
Capacitance series circuit: $\quad D=\frac{R_{s}}{X_{s}}=\omega C_{s} R_{s}$

Inductor and Capacitor

$$
\begin{aligned}
& L_{S}=\frac{R_{P}^{2}}{R_{P}^{2}+\omega^{2} L_{P}^{2}} \cdot L_{P} \\
& R_{S}=\frac{\omega^{2} L_{P}^{2}}{R_{P}^{2}+\omega^{2} L_{P}^{2}} \cdot R_{P} \\
& Q=\frac{\omega L_{S}}{R_{S}} \\
& L_{P}=\frac{R_{S}^{2}+\omega^{2} L_{S}^{2}}{\omega^{2} L_{S}^{2}} \cdot L_{S} \\
& R_{P}=\frac{R_{S}^{2}+\omega^{2} L_{S}^{2}}{R_{S}^{2}} \cdot R_{S} \\
& Q=\frac{R_{P}}{\omega L_{P}} \\
& R_{S}=\frac{1}{1+\omega^{2} C_{P}^{2} R_{P}^{2}} \cdot R_{P} \\
& D=\omega C_{S} R_{S} \\
& C_{P}=\frac{1}{1+\omega^{2} C_{S}^{2} R_{S}^{2}} \cdot C_{S} \\
& R_{P}=\frac{1+\omega^{2} C_{S}^{2} R_{S}^{2}}{\omega^{2} C_{S}^{2} R_{S}^{2}} \cdot R_{S} \\
& D=\frac{1}{\omega C_{P} R_{P}}
\end{aligned}
$$

AC Bridge: Balance Condition

- all four arms are considered as impedance (frequency dependent components)
- The detector is an ac responding device: headphone, ac meter
- Source: an ac voltage at desired frequency
$\mathbf{Z}_{1}, \mathbf{Z}_{2}, \mathbf{Z}_{3}$ and \mathbf{Z}_{4} are the impedance of bridge arms
At balance point: $\quad \mathbf{E}_{\mathbf{B A}}=\mathbf{E}_{\mathbf{B C}}$ or $\mathbf{I}_{1} \mathbf{Z}_{1}=\mathbf{I}_{2} \mathbf{Z}_{2}$

General Form of the ac Bridge

$$
\mathbf{I}_{1}=\frac{\mathbf{V}}{\mathbf{Z}_{1}+\mathbf{Z}_{3}} \text { and } \mathbf{I}_{2}=\frac{\mathbf{V}}{\mathbf{Z}_{2}+\mathbf{Z}_{4}}
$$

Complex Form: $\quad Z_{1} Z_{4}=Z_{2} Z_{3}$

$$
\begin{gathered}
\text { Polar Form: } \\
{_{1} \mathrm{Z}_{4}\left(\angle \theta_{1}+\angle \theta_{4}\right)=\mathrm{Z}_{2} \mathrm{Z}_{3}\left(\angle \theta_{2}+\angle \theta_{3}\right)} }
\end{gathered}\left\{\begin{array}{lc}
\text { Magnitude balance: } & \mathrm{Z}_{1} \mathrm{Z}_{4}=\mathrm{Z}_{2} \mathrm{Z}_{3} \\
\text { Phase balance: } & \angle \theta_{1}+\angle \theta_{4}=\angle \theta_{2}+\angle \theta_{3}
\end{array}\right.
$$

Example The impedance of the basic ac bridge are given as follows:

$$
\begin{array}{ll}
\mathbf{Z}_{1}=100 \Omega \angle 80^{\circ} \text { (inductive impedance) } & \mathbf{Z}_{3}=400 \angle 30^{\circ} \Omega \text { (inductive impedance) } \\
\mathbf{Z}_{2}=250 \Omega \text { (pure resistance) } & \mathbf{Z}_{4}=\text { unknown }
\end{array}
$$

Determine the constants of the unknown arm.
SOLUTION The first condition for bridge balance requires that

$$
Z_{4}=\frac{Z_{2} Z_{3}}{Z_{1}}=\frac{250 \times 400}{100}=1,000 \Omega
$$

The second condition for bridge balance requires that the sum of the phase angles of opposite arms be equal, therefore

$$
\angle \theta_{4}=\angle \theta_{2}+\angle \theta_{3}-\angle \theta_{1}=0+30-80=-50^{\circ}
$$

Hence the unknown impedance \mathbf{Z}_{4} can be written in polar form as

$$
\mathbf{Z}_{4}=1,000 \Omega \angle-50^{\circ}
$$

Indicating that we are dealing with a capacitive element, possibly consisting of a series combination of at resistor and a capacitor.

Example an ac bridge is in balance with the following constants: arm AB, $R=200 \Omega$ in series with $L=15.9 \mathrm{mH} R$; arm BC, $R=300 \Omega$ in series with $C=0.265 \mu \mathrm{~F}$; arm CD, unknown; arm DA, $=450 \Omega$. The oscillator frequency is 1 kHz . Find the constants of arm CD.

SOLUTION

$$
\begin{aligned}
& \mathbf{Z}_{1}=R+j \omega L=200+j 100 \Omega \\
& \mathbf{Z}_{2}=R+1 / j \omega C=300-j 600 \Omega \\
& \mathbf{Z}_{3}=R=450 \Omega \\
& \mathbf{Z}_{4}=\text { unknown }
\end{aligned}
$$

The general equation for bridge balance states that $\mathbf{Z}_{1} \mathbf{Z}_{4}=\mathbf{Z}_{\mathbf{2}} \mathbf{Z}_{3}$

$$
\mathbf{Z}_{4}=\frac{\mathbf{Z}_{2} \mathbf{Z}_{3}}{\mathbf{Z}_{1}}=\frac{450 \times(200+j 100)}{(300-j 600)}=j 150 \Omega
$$

This result indicates that \mathbf{Z}_{4} is a pure inductance with an inductive reactance of 150Ω at at frequency of 1 kHz . Since the inductive reactance $X_{L}=2 \pi f L$, we solve for L and obtain $L=23.9 \mathrm{mH}$

Comparison Bridge: Capacitance

Diagram of Capacitance Comparison Bridge

- Measure an unknown inductance or capacitance by comparing with it with a known inductance or capacitance.

At balance point: $\quad \mathbf{Z}_{1} \mathbf{Z}_{x}=\mathbf{Z}_{2} \mathbf{Z}_{3}$ where $\mathbf{Z}_{1}=R_{1} ; \mathbf{Z}_{2}=R_{2} ;$ and $\mathbf{Z}_{3}=R_{3}+\frac{1}{j \omega C_{3}}$ Unknown
capacitance

$$
R_{1}\left(R_{x}+\frac{1}{j \omega C_{x}}\right)=R_{2}\left(R_{3}+\frac{1}{j \omega C_{3}}\right)^{3}
$$

$$
R_{x}=\frac{R_{2} R_{3}}{R_{1}} \quad \text { and } \quad C_{x}=C_{3} \frac{R_{1}}{R_{2}}
$$

- Frequency independent
- To satisfy both balance conditions, the bridge must contain two variable elements in its configuration.

Comparison Bridge: Inductance

Diagram of Inductance Comparison Bridge
Separation of the real and imaginary terms yields: $R_{x}=\frac{R_{2} R_{3}}{R_{1}}$ and $L_{x}=L_{3} \frac{R_{2}}{R_{1}}$

- Frequency independent
- To satisfy both balance conditions, the bridge must contain two variable elements in its configuration.

Maxwell Bridge

Diagram of Maxwell Bridge

- Measure an unknown inductance in terms of a known capacitance

At balance point: $\quad \mathbf{Z}_{x}=\mathbf{Z}_{2} \mathbf{Z}_{3} \mathbf{Y}_{1}$ where $\mathbf{Z}_{2}=R_{2} ; \mathbf{Z}_{3}=R_{3} ;$ and $\mathbf{Y}_{1}=\frac{1}{R_{1}}+j \omega C_{1}$

$$
\mathbf{Z}_{x}=R_{x}+j \omega L_{x}=R_{2} R_{3}\left(\frac{1}{R_{1}}+j \omega C_{1}\right)
$$

Separation of the real and imaginary terms yields:

$$
R_{x}=\frac{R_{2} R_{3}}{R_{1}} \quad \text { and } \quad L_{x}=R_{2} R_{3} C_{1}
$$

- Frequency independent
- Suitable for Medium Q coil (1-10), impractical for high Q coil: since R_{1} will be very large.

Hay Bridge

Diagram of Hay Bridge

- Similar to Maxwell bridge: but R_{1} series with C_{1} At balance point: $\quad \mathbf{Z}_{1} \mathbf{Z}_{x}=\mathbf{Z}_{2} \mathbf{Z}_{3}$
where $\mathbf{Z}_{1}=R_{1}-\frac{j}{\omega C_{1}} ; \mathbf{Z}_{2}=R_{2} ;$ and $\mathbf{Z}_{3}=R_{3}$ $\left(R_{1}+\frac{1}{j \omega C_{1}}\right)\left(R_{x}+j \omega L_{x}\right)=R_{2} R_{3}$
which expands to $R_{1} R_{x}+\frac{L_{x}}{C_{1}}-\frac{j R_{x}}{\omega C_{1}}+j \omega L_{x} R_{1}=R_{2} R_{3}$

$$
\begin{equation*}
R_{1} R_{x}+\frac{L_{x}}{C_{1}}=R_{2} R_{3} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\frac{R_{x}}{\omega C_{1}}=\omega L_{x} R_{1} \tag{2}
\end{equation*}
$$

Solve the above equations simultaneously

Hay Bridge: continues

$$
R_{x}=\frac{\omega^{2} C_{1}^{2} R_{1} R_{2} R_{3}}{1+\omega^{2} C_{1}^{2} R_{1}^{2}} \quad \text { and } \quad L_{x}=\frac{R_{2} R_{3} C_{1}}{1+\omega^{2} C_{1}^{2} R_{1}^{2}}
$$

Phasor diagram of arm 4 and 1
Thus, L_{x} can be rewritten as

$$
\begin{aligned}
& \tan \theta_{L}=\frac{X_{L}}{R}=\frac{\omega L_{x}}{R_{x}}=Q \\
& \tan \theta_{C}=\frac{X_{C}}{R}=\frac{1}{\omega C_{1} R_{1}}
\end{aligned}
$$

$$
\tan \theta_{L}=\tan \theta_{C} \text { or } Q=\frac{1}{\omega C_{1} R_{1}}
$$

$$
L_{x}=\frac{R_{2} R_{3} C_{1}}{1+\left(1 / Q^{2}\right)}
$$

For high Q coil (>10), the term $(1 / Q)^{2}$ can be neglected

$$
L_{x} \approx R_{2} R_{3} C_{1}
$$

Schering Bridge

Diagram of Schering Bridge

which expands to $\quad R_{x}-\frac{j}{\omega C_{x}}=\frac{R_{2} C_{1}}{C_{3}}-\frac{j R_{2}}{\omega C_{3} R_{1}}$
Separation of the real and imaginary terms yields:

$$
R_{x}=R_{2} \frac{C_{1}}{C_{3}} \quad \text { and } \quad C_{x}=C_{3} \frac{R_{1}}{R_{2}}
$$

Schering Bridge: continues

Dissipation factor of a series $R C$ circuit: $\quad D=\frac{R_{x}}{X_{x}}=\omega R_{x} C_{x}$
Dissipation factor tells us about the quality of a capacitor, how close the phase angle of the capacitor is to the ideal value of 90°

For Schering Bridge: $\quad D=\omega R_{x} C_{x}=\omega R_{1} C_{1}$

For Schering Bridge, R_{1} is a fixed value, the dial of C_{1} can be calibrated directly in D at one particular frequency

Wien Bridge

Diagram of Wien Bridge

- Measure frequency of the voltage source using series RC in one arm and parallel RC in the adjoining arm

At balance point: $\quad \mathbf{Z}_{2}=\mathbf{Z}_{1} \mathbf{Z}_{4} \mathbf{Y}_{3}$

$$
\begin{gather*}
\mathbf{Z}_{1}=R_{1}+\frac{1}{j \omega C_{1}} ; \mathbf{Z}_{2}=R_{2} ; \mathbf{Y}_{3}=\frac{1}{R_{3}}+j \omega C_{3} ; \text { and } \mathbf{Z}_{4}=R_{4} \\
R_{2}=\left(R_{1}-\frac{j}{\omega C_{1}}\right) R_{4}\left(\frac{1}{R_{3}}+j \omega C_{3}\right) \tag{1}
\end{gather*}
$$

which expands to $R_{2}=\frac{R_{1} R_{4}}{R_{3}}+j \omega C_{3} R_{1} R_{4}-\frac{j R_{4}}{\omega C_{1} R_{3}}+\frac{R_{4} C_{3}}{C_{1}}<\frac{R_{2}}{R_{4}}=\frac{R_{1}}{R_{3}}+\frac{C_{3}}{C_{1}}$

Rearrange Eq. (2) gives

$$
\begin{equation*}
f=\frac{1}{2 \pi \sqrt{C_{1} C_{3} R_{1} R_{3}}} \tag{2}
\end{equation*}
$$

In most, Wien Bridge, $R_{1}=R_{3}$ and $C_{1}=C_{3}$

$$
\begin{array}{ll}
(1) \rightarrow R_{2}=2 R_{4} & (2) \rightarrow f=\frac{1}{2 \pi R C}
\end{array}
$$

